FacenetPytorch人脸识别方案--基于米尔全志T527开发板

2024-11-28

1650

来源:米尔电子
本篇测评由电子工程世界的优秀测评者“小火苗”提供。
本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志 T527开发板)的FacenetPytorch人脸识别方案测试。
一、facenet_pytorch算法实现人脸识别
深度神经网络
1.简介
Facenet-PyTorch 是一个基于 PyTorch 框架实现的人脸识别库。它提供了 FaceNet 模型的 PyTorch 实现,可以用于训练自己的人脸识别模型。FaceNet 是由 Google 研究人员提出的一种深度学习模型,专门用于人脸识别任务。
在利用PyTorch神经网络算法进行人脸图像对比的实验设置中,我们专注于对比环节,而不涉及实际项目的完整实现细节。但55555贴近实际应用,我们可以构想以下流程:
1)捕捉新人脸图像:首先,我们使用摄像头或其他图像采集设备捕捉一张新的人脸照片。
2)加载存储的人脸图像:接着,从数据库中加载所有已存储的人脸图像。这些图像是之前采集并存储的,用于与新捕捉到的人脸照片进行对比。
3)构建神经网络模型:为了实现对比功能,我们需要一个预先训练好或自定义的神经网络模型。这个模型能够提取人脸图像中的关键特征,使得相似的图像在特征空间中具有相近的表示。
4)特征提取:利用神经网络模型,对新捕捉到的人脸照片和存储的每一张人脸图像进行特征提取。这些特征向量将用于后续的对比计算。
5)计算相似度:采用合适的相似度度量方法(如余弦相似度、欧氏距离等),计算新照片特征向量与存储图像特征向量之间的相似度。
6)确定匹配图像:根据相似度计算结果,找到与新照片相似度最高的存储图像,即认为这两张图像匹配成功。
7)输出匹配结果:最后,输出匹配成功的图像信息或相关标识,以完成人脸对比的实验任务。
2.核心组件
MTCNN:Multi-task Cascaded Convolutional Networks,即多任务级联卷积网络,专门设计用于同时进行人脸检测和对齐。它在处理速度和准确性上都有出色的表现,是当前人脸检测领域的主流算法之一。
FaceNet:由Google研究人员提出的一种深度学习模型,专门用于人脸识别任务。FaceNet通过将人脸图像映射到一个高维空间,使得同一个人的不同图像在这个空间中的距离尽可能小,而不同人的图像距离尽可能大。这种嵌入表示可以直接用于人脸验证、识别和聚类。
3.功能
支持人脸检测:使用MTCNN算法进行人脸检测,能够准确识别出图像中的人脸位置。
支持人脸识别:使用FaceNet算法进行人脸识别,能够提取人脸特征并进行相似度计算,实现人脸验证和识别功能。
二、安装facenet_pytorch库
1.更新系统
更新ubuntu系统,详情查看米尔提供的资料文件
2.更新系统软件
apt-get update
3.安装git等支持软件
sudo apt-get install -y python3-dev python3-pip libopenblas-dev libssl-dev libffi-dev git cmake
4.安装Pytorch支持工具
# 克隆 PyTorch 源代码
git clone --recursive https://github.com/pytorch/pytorch
# 进入 PyTorch 目录
cd pytorch
# 安装 PyTorch (需要根据你的需求选择 CUDA 版本,如果不需要 GPU 支持则不需要 --cuda 参数)
pip3 install --no-cache-dir torch -f https://download.pytorch.org/whl/torch_stable.html
# 测试 PyTorch 安装
python3 -c "import torch; print(torch.__version__)"
5.安装facenet_pytorch
pip3 install facenet_pytorch
三、CSDN参考案例
1.代码实现
############face_demo.py#############################
import cv2
import torch
from facenet_pytorch import MTCNN, InceptionResnetV1
# 获得人脸特征向量
def load_known_faces(dstImgPath, mtcnn, resnet):
aligned = []
knownImg = cv2.imread(dstImgPath) # 读取图片
face = mtcnn(knownImg) # 使用mtcnn检测人脸,返回人脸数组
if face is not None:
aligned.append(face[0])
aligned = torch.stack(aligned).to(device)
with torch.no_grad():
known_faces_emb = resnet(aligned).detach().cpu()
# 使用ResNet模型获取人脸对应的特征向量
print("n人脸对应的特征向量为:n", known_faces_emb)
return known_faces_emb, knownImg
# 计算人脸特征向量间的欧氏距离,设置阈值,判断是否为同一张人脸
def match_faces(faces_emb, known_faces_emb, threshold):
isExistDst = False
distance = (known_faces_emb[0] - faces_emb[0]).norm().item()
print("n两张人脸的欧式距离为:%.2f" % distance)
if (distance < threshold):
isExistDst = True
return isExistDst
if __name__ == '__main__':
# help(MTCNN)
# help(InceptionResnetV1)
# 获取设备
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# mtcnn模型加载设置网络参数,进行人脸检测
mtcnn = MTCNN(min_face_size=12, thresholds=[0.2, 0.2, 0.3],
keep_all=True, device=device)
# InceptionResnetV1模型加载用于获取人脸特征向量
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)
MatchThreshold = 0.8 # 人脸特征向量匹配阈值设置
known_faces_emb, _ = load_known_faces('yz.jpg', mtcnn, resnet) # 已知人物图
faces_emb, img = load_known_faces('yz1.jpg', mtcnn, resnet) # 待检测人物图
isExistDst = match_faces(faces_emb, known_faces_emb, MatchThreshold) # 人脸匹配
print("设置的人脸特征向量匹配阈值为:", MatchThreshold)
if isExistDst:
boxes, prob, landmarks = mtcnn.detect(img, landmarks=True)
print('由于欧氏距离小于匹配阈值,故匹配')
else:
print('由于欧氏距离大于匹配阈值,故不匹配')
此代码是使用训练后的模型程序进行使用,在程序中需要标明人脸识别对比的图像。
2.实践过程
第一次运行时系统需要下载预训练的vggface模型,下载过程较长,后面就不需要在下载了运行会很快。如图所示:
3.程序运行异常被终止
运行程序,提示killed,系统杀死了本程序的运行,经过多方面的测试,最终发现是识别的图片过大,使得程序对内存消耗过大导致。后将图片缩小可以正常运行了。
以下是对比图像和对比结果。
四、gitHub开源代码
1.首先下载代码文件
代码库中,大致的介绍了facenet算法的训练步骤等。
2.代码实现
以下是facenet的python代码,注意需要更改下面的一条程序"cuda" False,因为t527使用的是cpu,芯片到时自带gpu但是cuda用不了,因为cuda是英伟达退出的一种计算机架构。
import matplotlib.pyplot as plt
import numpy as np
import torchimport torch.backends.cudnn as cudnn
from nets.facenet import Facenet as facenet
from utils.utils import preprocess_input, resize_image, show_config
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改2个参数
# model_path和backbone需要修改!
#--------------------------------------------#
class Facenet(object):
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测要修改model_path,指向logs文件夹下的权值文件
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表准确度较高,仅代表该权值在验证集上泛化性能较好。
#--------------------------------------------------------------------------#
"model_path" : "model_data/facenet_mobilenet.pth",
#--------------------------------------------------------------------------#
# 输入图片的大小。
#--------------------------------------------------------------------------#
"input_shape" : [160, 160, 3],
#--------------------------------------------------------------------------#
# 所使用到的主干特征提取网络
#--------------------------------------------------------------------------#
"backbone" : "mobilenet",
#-------------------------------------------#
# 是否进行不失真的resize
#-------------------------------------------#
"letterbox_image" : True,
#-------------------------------------------#
# 是否使用Cuda# 没有GPU可以设置成False
#-------------------------------------------#
"cuda" : False,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化Facenet
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
for name, value in kwargs.items():
setattr(self, name, value)
self.generate()
show_config(**self._defaults)
def generate(self):
#---------------------------------------------------#
# 载入模型与权值
#---------------------------------------------------#
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.net = facenet(backbone=self.backbone, mode="predict").eval()
self.net.load_state_dict(torch.load(self.model_path, map_location=device), strict=False)
print('{} model loaded.'.format(self.model_path))
if self.cuda:
self.net = torch.nn.DataParallel(self.net)
cudnn.benchmark = True
self.net = self.net.cuda()
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image_1, image_2):
#---------------------------------------------------#
# 图片预处理,归一化
#---------------------------------------------------#
with torch.no_grad():
image_1 = resize_image(image_1, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)
image_2 = resize_image(image_2, [self.input_shape[1], self.input_shape[0]], letterbox_image=self.letterbox_image)
photo_1 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_1, np.float32)), (2, 0, 1)), 0))
photo_2 = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image_2, np.float32)), (2, 0, 1)), 0))
if self.cuda:
photo_1 = photo_1.cuda()
photo_2 = photo_2.cuda()
#---------------------------------------------------#
# 图片传入网络进行预测
#---------------------------------------------------#
output1 = self.net(photo_1).cpu().numpy()
output2 = self.net(photo_2).cpu().numpy()
#---------------------------------------------------#
# 计算二者之间的距离
#---------------------------------------------------#
l1 = np.linalg.norm(output1 - output2, axis=1)
plt.subplot(1, 2, 1)
plt.imshow(np.array(image_1))
plt.subplot(1, 2, 2)
plt.imshow(np.array(image_2))
plt.text(-12, -12, 'Distance:%.3f' % l1, ha='center', va= 'bottom',fontsize=11)
plt.show()
return l1
3.代码实现
此代码调用的签名的代码,但其可以直接的去调用图片进行人脸识别。
from PIL import Image
from facenet import Facenet
if __name__ == "__main__":
model = Facenet()
while True:
image_1 = input('Input image_1 filename:')
try:
image_1 = Image.open(image_1)
except:
print('Image_1 Open Error! Try again!')
continue
image_2 = input('Input image_2 filename:')
try:
image_2 = Image.open(image_2)
except:
print('Image_2 Open Error! Try again!')
continue
probability = model.detect_image(image_1,image_2)
print(probability)
4.程序运行
运行程序后首先显示的是程序的配置信息,然后可以输入图像对比检测的内容。以下是图像识别的效果和对比的准确率。
五、参考文献
CSDN博客
https://blog.csdn.net/weixin_45939929/article/details/124789487?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-1-124789487-blog-142987324.235^v43^pc_blog_bottom_relevance_base6&spm=1001.2101.3001.4242.2&utm_relevant_index=4
官方源码来源
https://gitcode.com/gh_mirrors/fac/facenet-pytorch/overview
*部分图片来源于网络,如有版权问题请联系删除
2025-09-04
6TOPS算力驱动30亿参数LLM,米尔RK3576部署端侧多模态多轮对话
关键词:瑞芯微 RK3576、NPU(神经网络处理器)、端侧小语言模型(SLM)、多模态 LLM、边缘 AI 部署、开发板当 GPT-4o 用毫秒级响应处理图文混合指令、Gemini-1.5-Pro 以百万 token 上下文 “消化” 长文档时,行业的目光正从云端算力竞赛转向一个更实际的命题:如何让智能 “落地”?—— 摆脱网络依赖、保护本地隐私、控制硬件成本,让设备真正具备 “看见并对话” 的
2025-09-04
直播预告 | 恩智浦技术日巡回研讨会:技术盛宴,“云端”开席!
9月9日,恩智浦技术日巡回研讨会将在杭州举办!活动同期,恩智浦携手生态合作伙伴,将对会议中精彩的技术演讲全程进行网络直播,让更多的开发者足不出户,也能够直击活动现场,解锁前沿产品方案,共赴“云端”技术盛宴!直播期间,参与观众互动,还有好礼等你拿~~点击文章顶部卡片,或扫描海报二维码,约起来吧!
2025-08-28
米尔发表演讲,并携瑞萨RZ产品亮相2025 Elexcon深圳电子展
2025年8月26日-28日,Elexcon深圳国际电子展在深圳会展中心(福田)1号馆(展台号:1L30)盛大举行。作为全球电子产业链的重要盛会,展会汇聚创新技术与行业解决方案。米尔电子MYIR携RZ系列核心板、开发板等方案Demo亮相瑞萨嵌入式MCU/MPU生态专区,并发表主题演讲。技术盛宴:瑞萨RZ系列产品矩阵亮相展会上,米尔展示了基于RZ/G2L、RZ/G2UL、RZ/T2H的核心板
2025-08-28
留言领奖!2025 STM32研讨会即将启幕,米尔期待与你共会
2025年9月11日及9月17日,STM32研讨会将走进北京和上海,为大家深入解读STM32的中国战略,并围绕STM32在不同领域的最新产品布局和生态展开主题演讲,包括边缘人工智能、电源能源、无线连接、安全等,深入探讨STM32带来的前沿科技成果。同时,STM32还将携手业内多家合作伙伴,展示STM32在更多领域的解决方案及应用实例。欢迎开发者及工程师莅临现场,与ST专家面对面沟通交流,体验不同产
2025-08-28
Qwen2-VL-3B模型在米尔瑞芯微RK3576开发板NPU多模态部署指导与评测
关键词:瑞芯微 RK3576、NPU(神经网络处理器)、端侧小语言模型(SLM)、多模态 LLM、边缘 AI 部署、开发板、RKLLM随着大语言模型(LLM)技术的快速迭代,从云端集中式部署到端侧分布式运行的趋势日益明显。端侧小型语言模型(SLM)凭借低延迟、高隐私性和离线可用的独特优势,正在智能设备、边缘计算等场景中展现出巨大潜力。瑞芯微 RK3576 开发板作为一款聚焦边缘 AI 的硬件平台,
2025-08-14
12路1080P高清视频流,米尔RK3576开发板重塑视频处理极限
在智能视觉技术不断发展的今天,多路摄像数据的处理与传输已成为众多应用场景的核心需求。从智能安防监控领域的全面覆盖,到工业视觉处理网关的精准检测,再到车载环视融合平台的实时驾驶辅助以及智慧社区AI防控的快速响应,多路摄像数据的处理与传输已成为关键需求,而高效且低延时的解决方案则是实现这些应用的核心。目前多路摄像传输方案往往存在一定局限,接入路数有限,难以满足大规模监控场景的需求,且延迟较高,影响实时
2025-08-14
共建生态,米尔将出席2025安路科技FPGA技术沙龙
在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业专家、企业代表及技术开发者,探讨前沿技术趋势,解锁定制化解决方案,共建开放共赢的FPGA生态圈!米尔作为领先的嵌入式处理器模组厂商,将携安路FPGA核心板和开发板亮相,并发表主题演
2025-08-08
如何在RK3576开发板上板端编译OpenCV并搭建应用
本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的板端编译OpenCV及环境搭建方案的开发测试。摘自优秀创作者-短笛君RK3576具有如下配置:4× Cortex-A72(大核,主频最高 2.2GHz)4× Cortex-A53(小核,主频最高 1.8GHz)NPU(AI加速单元):独立 NPU,算力典型值6 TOPS(INT8)支持 TensorFlow L
2025-08-08
倒计时!米尔-安路飞龙派创意秀奖品等您领~~
创意秀活动进入倒计时阶段2025年米尔-安路飞龙派FPGA FPSoC创意开发大赛即将于8月15日正式收官(原定于6月15日,已延期到8月15日)。作为国产工业级FPGA领域的赛事,本次活动已吸引多支开发团队参与,基于MYD-YM90X开发板产出了众多创新解决方案。现距截稿仅剩7天,米尔特别提醒尚未提交作品的开发者把握最后几天,分享您的技术创作,申领米尔电子的奖品。活动链接:https://mp
2025-07-25
如何在RK3576开发板上运行TinyMaix :超轻量级推理框架--基于米尔MYD-LR3576开发板
本文将介绍基于米尔电子MYD-LR3576开发平台部署超轻量级推理框架方案:TinyMaix摘自优秀创作者-短笛君TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意低资源MCU上运行轻量级深度学习模型。关键特性核心代码少于 400行(tm_layers.c+tm_model.c+arch_cpu.h),代码段(.text)少于3KB低内存消耗支持 I