6TOPS算力驱动30亿参数LLM,米尔RK3576部署端侧多模态多轮对话

2025-09-04

16

来源:米尔电子
关键词:瑞芯微 RK3576、NPU(神经网络处理器)、端侧小语言模型(SLM)、多模态 LLM、边缘 AI 部署、开发板
当 GPT-4o 用毫秒级响应处理图文混合指令、Gemini-1.5-Pro 以百万 token 上下文 “消化” 长文档时,行业的目光正从云端算力竞赛转向一个更实际的命题:如何让智能 “落地”?—— 摆脱网络依赖、保护本地隐私、控制硬件成本,让设备真正具备 “看见并对话” 的离线智能,成为边缘 AI 突破的核心卡点。
2024 年,随着边缘 SoC 算力正式迈入 6 TOPS 门槛,瑞芯微 RK3576 给出了首个可量产的答案:一套完整的多模态交互对话解决方案。
如今,“端侧能否独立运行图文多轮对话” 已不再是技术疑问,而是工程实现问题。RK3576 通过硬件算力优化与软件栈协同,将视觉编码、语言推理、对话管理三大核心能力封装为可落地的工程方案,而本文将聚焦其多轮对话的部署全流程,拆解从模型加载到交互推理的每一个关键环节。
上一次我们详细讲解在RK3576上部署多模态模型的案例,这次将继续讲解多轮对话的部署流程。整体流程基于 rknn-llm 里的多轮对话案例[1]。
本文目录
本文目录 一、引言 1.1 什么是多轮对话? 1.2 多轮对话系统鸟瞰:三颗“核心”协同驱动 1.3 核心逻辑:多轮对话的处理流程 二、工程化落地:从源码到部署的全流程 2.1 依赖环境 2.2 一键编译 2.3 端侧部署步骤 三、效果展示:图文多轮问答 四、二次开发与拓展方向 五、结论与未来发展方向
一、引言
1.1 什么是多轮对话?
多轮对话(Multi-Turn Dialogue)是指用户与智能系统通过多轮交互逐步明确需求、解决问题的对话形式。这种交互依赖对话历史的上下文连贯性,要求系统能够动态理解用户意图、维护对话状态并生成符合语境的回应。
本质是动态语境下的交互推理,其核心在于通过多轮信息交换逐步明确用户需求。例如,用户可能先询问 “附近有餐厅吗?”,系统回应后用户补充 “要适合家庭聚餐的”,系统需结合历史对话调整推荐策略。
这种交互模式与单轮问答的区别在于:
1.2 多轮对话系统鸟瞰:三颗“核心”协同驱动
RK3576 多模态交互对话方案基于 RKLLM 的核心运作,依赖于图像视觉编码器、大语言模型与对话管家这三大模块的协同配合,三者各司其职、无缝衔接,共同构建起完整的多模态对话能力。
1. 图像视觉编码器(Vision Encoder)
模型选择:采用 qwen2_5_vl_3b_vision_rk3576.rknn 模型(本文)。 核心作用:将输入图像压缩为视觉 token 如 256 个视觉 token,直接输入至大语言模型中,实现图像信息向语言模型可理解格式的转换。
2. 大语言模型(LLM Core)
模型选择:搭载 qwen2.5-vl-3b-w4a16_level1_rk3576.rkllm 模型,采用 W4A16 量化方案(本文)。 模型规模:参数规模达 30 亿,KV-Cache,为对话推理提供核心的语言理解与生成能力。
3. 对话管家(Dialogue Manager)
基于纯 C++实现,采用单线程事件循环机制,承担着对话流程的统筹调度工作,具体职责包括:
1.3 核心逻辑:多轮对话的处理流程
该方案的多模态多轮对话 demo,整体遵循“模型加载 → 图片预处理 → 用户交互 → 推理输出”的核心流程,支持图文一体的多模态对话,适配多轮问答、视觉问答等典型场景。
具体运行机制可拆解为以下步骤:
1. 模型初始化
首先加载大语言模型(LLM),并配置模型路径、max_new_tokens
(生成内容最大 token 数)、max_context_len
(最大上下文长度)、top_k
、特殊 token 等关键参数;随后加载视觉编码模型(imgenc),为后续图片处理做好准备。
2. 图片处理与特征提取
读取输入图片后,先将其扩展为正方形并填充背景色以统一尺寸,再调整至模型要求的 392x392 分辨率,最后送入视觉编码模型进行处理,生成图片的 embedding 向量,完成图像特征的提取。
3. 多轮交互机制
程序会提供预设问题供用户选择(官方案例中也有输入序号,可以快速提问),同时支持用户自定义输入,核心交互逻辑通过以下机制实现:
rkllm_infer_params.keep_history = 1
,开启上下文记忆功能,KV-Cache 在显存中持续追加存储,每轮对话仅计算新增 token,大幅提升推理效率。使模型能关联多轮对话内容;src/main.cpp
。rkllm_clear_kv_cache(llmHandle, 1, nullptr, nullptr)
,清空模型的 KV 缓存,重置对话上下文。rkllm_set_chat_template()
动态注入模型,无需重新训练即可切换人设,支持中英文双语系统提示。
模板示例如下:
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{用户输入}<|im_end|>
<|im_start|>assistant
4. 推理与输出
用户输入后,系统先判断输入中是否包含<image>
标签:若包含,则将文本与图片 embedding 结合,启动多模态推理;若不包含,则进行纯文本推理。组装输入结构体并传递给模型后,推理结果将实时打印输出。
5. 退出与资源释放
支持用户输入“exit”退出程序,此时系统会自动销毁已加载的模型,并释放占用的硬件资源,确保运行环境的整洁。
二、工程化落地:从源码到部署的全流程
由于先前我们已经讲过环境的部署,如刷机、文件准备等,这里步骤只提出比较关键的。工程位于:rknn-llm/examples/Multimodal_Interactive_Dialogue_Demo
,下面我们来逐步看下操作步骤。
2.1 依赖环境
方案的编译与运行需满足以下依赖条件
图像处理:OpenCV ≥ 4.5 视觉模型运行:RKNNRT ≥ 1.6 语言模型运行:RKLLMRT ≥ 0.9
2.2 一键编译
针对不同操作系统提供便捷的编译脚本,我们是 Linux 系统执行./build-linux.sh
,编译结果如下:
产物目录为:
install/demo_Linux_aarch64/
├─ demo # 主程序可执行文件
└─ lib # 依赖动态库
2.3 端侧部署步骤
通过 U 盘或者手机将编译好的产物文件、模型、图片上传到开发板上,然后在多轮对话的实例的目录下,执行以下命令:
cd /data/demo_Linux_aarch64
export LD_LIBRARY_PATH=./lib
./demo demo.jpg vision.rknn llm.rkllm 128 512
其中,部署命令需传入 5 个核心参数,分别对应:
image_path
:输入图片路径encoder_model_path
:视觉编码模型路径llm_model_path
:大语言模型路径max_new_tokens
:每轮生成的最大 token 数(控制回答长度,避免溢出)max_context_len
:最大上下文长度(限制历史对话+当前输入总长度,防止显存占用过高)
三、效果展示:图文多轮问答
以下面这张图片作为测试图片,选择下面这张图是因为,有人物、文字、物体、背景等。
我们依次准备的问题如下:
每轮对话我都有截动态图,可以感受下体感速度。
可以明显感受到这两个过程是串行的,如果异步处理可以更快。
多轮对话1:这张图片上有哪些文字信息
多轮对话2:图中电路板上的字是什么颜色
多轮对话3:图中女孩头发和衣服分别是什么颜色
多轮对话4:图中动漫角色看起来多大年龄
多轮对话5:图中背景颜色和女孩眼睛颜色一样嘛
rkllm_infer_params.keep_history = 1
代码中
keep_history = 1
是开启上下文记忆功能,即模型应记住前序对话中的关键信息,如 “女孩眼睛颜色”“背景颜色”,而 “记不住” 是记忆功能未生效的表现,原因可能除了超过历史上下文预设的阈值,有时还有可能是因为上下文长度超限(max_context_len=512),或者KV-Cache 清理机制误触发等。
四、二次开发与拓展方向
方案具备良好的可扩展性,便于开发者根据需求进行二次开发:
image_enc.cc
文件,将输入分辨率调整为与模型匹配的大小,原因是这些参数与模型的固有结构设计和输入处理逻辑强绑定,直接影响特征提取的正确性和数据传递的一致性。不同的 Qwen2-VL 模型(2B 和 7B)需要代码中指定IMAGE_HEIGHT
、IMAGE_WIDTH
及EMBED_SIZE
;main.cpp
中集成 VAD(语音活动检测)+ ASR(语音识别,如 Whisper-Tiny INT8)模块,将语音转换为文本后接入现有推理流水线,实现“看图说话+语音问答”的融合交互。
五、结论与未来发展方向
如果说 “大模型上云” 是 AI 的 “星辰大海”,那么 “多模态落地端侧” 就是 AI 的 “柴米油盐”—— 后者决定了智能技术能否真正渗透到智能家居、工业质检、穿戴设备等千万级场景中。RK3576 的多模态交互对话方案,其价值远不止 “实现了一项技术”,更在于提供了一套 “算力适配 - 工程封装 - 二次拓展” 的端侧 AI 落地范式。
从技术内核看,它通过 “视觉编码器 + LLM + 对话管家” 的模块化设计,平衡了推理性能与开发灵活性:W4A16 量化方案让 30 亿参数模型适配 6 TOPS 算力,KV-Cache 动态维护实现多轮对话效率跃升,单线程事件循环降低了资源占用 —— 这些细节不是技术炫技,而是直击端侧 “算力有限、场景碎片化” 的痛点。从工程落地看,一键编译脚本、清晰的参数配置、可复现的部署流程,让开发者无需深耕底层优化即可快速验证场景,大幅缩短了从技术原型到产品的周期。
展望未来,这套方案的演进将围绕三个方向深化:
当 RK3576 证明 “端侧能跑好转好多模态对话” 时,边缘 AI 的竞争已从 “能否实现” 转向 “如何更优”。而这套方案的真正意义,在于为行业提供了一块 “可复用的基石”—— 让更多开发者无需重复造轮子,只需聚焦场景创新,就能让 “离线智能” 从实验室走向量产货架,最终让 “AI 就在身边” 成为无需网络支撑的常态。
参考资料
airockchip/rknn-llm: 'https://github.com/airockchip/rknn-llm'
2025-09-04
6TOPS算力驱动30亿参数LLM,米尔RK3576部署端侧多模态多轮对话
关键词:瑞芯微 RK3576、NPU(神经网络处理器)、端侧小语言模型(SLM)、多模态 LLM、边缘 AI 部署、开发板当 GPT-4o 用毫秒级响应处理图文混合指令、Gemini-1.5-Pro 以百万 token 上下文 “消化” 长文档时,行业的目光正从云端算力竞赛转向一个更实际的命题:如何让智能 “落地”?—— 摆脱网络依赖、保护本地隐私、控制硬件成本,让设备真正具备 “看见并对话” 的
2025-09-04
直播预告 | 恩智浦技术日巡回研讨会:技术盛宴,“云端”开席!
9月9日,恩智浦技术日巡回研讨会将在杭州举办!活动同期,恩智浦携手生态合作伙伴,将对会议中精彩的技术演讲全程进行网络直播,让更多的开发者足不出户,也能够直击活动现场,解锁前沿产品方案,共赴“云端”技术盛宴!直播期间,参与观众互动,还有好礼等你拿~~点击文章顶部卡片,或扫描海报二维码,约起来吧!
2025-08-28
米尔发表演讲,并携瑞萨RZ产品亮相2025 Elexcon深圳电子展
2025年8月26日-28日,Elexcon深圳国际电子展在深圳会展中心(福田)1号馆(展台号:1L30)盛大举行。作为全球电子产业链的重要盛会,展会汇聚创新技术与行业解决方案。米尔电子MYIR携RZ系列核心板、开发板等方案Demo亮相瑞萨嵌入式MCU/MPU生态专区,并发表主题演讲。技术盛宴:瑞萨RZ系列产品矩阵亮相展会上,米尔展示了基于RZ/G2L、RZ/G2UL、RZ/T2H的核心板
2025-08-28
留言领奖!2025 STM32研讨会即将启幕,米尔期待与你共会
2025年9月11日及9月17日,STM32研讨会将走进北京和上海,为大家深入解读STM32的中国战略,并围绕STM32在不同领域的最新产品布局和生态展开主题演讲,包括边缘人工智能、电源能源、无线连接、安全等,深入探讨STM32带来的前沿科技成果。同时,STM32还将携手业内多家合作伙伴,展示STM32在更多领域的解决方案及应用实例。欢迎开发者及工程师莅临现场,与ST专家面对面沟通交流,体验不同产
2025-08-28
Qwen2-VL-3B模型在米尔瑞芯微RK3576开发板NPU多模态部署指导与评测
关键词:瑞芯微 RK3576、NPU(神经网络处理器)、端侧小语言模型(SLM)、多模态 LLM、边缘 AI 部署、开发板、RKLLM随着大语言模型(LLM)技术的快速迭代,从云端集中式部署到端侧分布式运行的趋势日益明显。端侧小型语言模型(SLM)凭借低延迟、高隐私性和离线可用的独特优势,正在智能设备、边缘计算等场景中展现出巨大潜力。瑞芯微 RK3576 开发板作为一款聚焦边缘 AI 的硬件平台,
2025-08-14
12路1080P高清视频流,米尔RK3576开发板重塑视频处理极限
在智能视觉技术不断发展的今天,多路摄像数据的处理与传输已成为众多应用场景的核心需求。从智能安防监控领域的全面覆盖,到工业视觉处理网关的精准检测,再到车载环视融合平台的实时驾驶辅助以及智慧社区AI防控的快速响应,多路摄像数据的处理与传输已成为关键需求,而高效且低延时的解决方案则是实现这些应用的核心。目前多路摄像传输方案往往存在一定局限,接入路数有限,难以满足大规模监控场景的需求,且延迟较高,影响实时
2025-08-14
共建生态,米尔将出席2025安路科技FPGA技术沙龙
在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业专家、企业代表及技术开发者,探讨前沿技术趋势,解锁定制化解决方案,共建开放共赢的FPGA生态圈!米尔作为领先的嵌入式处理器模组厂商,将携安路FPGA核心板和开发板亮相,并发表主题演
2025-08-08
如何在RK3576开发板上板端编译OpenCV并搭建应用
本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的板端编译OpenCV及环境搭建方案的开发测试。摘自优秀创作者-短笛君RK3576具有如下配置:4× Cortex-A72(大核,主频最高 2.2GHz)4× Cortex-A53(小核,主频最高 1.8GHz)NPU(AI加速单元):独立 NPU,算力典型值6 TOPS(INT8)支持 TensorFlow L
2025-08-08
倒计时!米尔-安路飞龙派创意秀奖品等您领~~
创意秀活动进入倒计时阶段2025年米尔-安路飞龙派FPGA FPSoC创意开发大赛即将于8月15日正式收官(原定于6月15日,已延期到8月15日)。作为国产工业级FPGA领域的赛事,本次活动已吸引多支开发团队参与,基于MYD-YM90X开发板产出了众多创新解决方案。现距截稿仅剩7天,米尔特别提醒尚未提交作品的开发者把握最后几天,分享您的技术创作,申领米尔电子的奖品。活动链接:https://mp
2025-07-25
如何在RK3576开发板上运行TinyMaix :超轻量级推理框架--基于米尔MYD-LR3576开发板
本文将介绍基于米尔电子MYD-LR3576开发平台部署超轻量级推理框架方案:TinyMaix摘自优秀创作者-短笛君TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意低资源MCU上运行轻量级深度学习模型。关键特性核心代码少于 400行(tm_layers.c+tm_model.c+arch_cpu.h),代码段(.text)少于3KB低内存消耗支持 I