【深度实战】米尔MYD-LR3576 AMP非对称多核开发指南:从配置到实战
2025-12-05
9
来源:米尔电子
一、什么是AMP?为什么重要?
AMP(Asymmetric Multi-Processing)非对称多处理架构,允许单个芯片的不同核心运行不同的操作系统或裸机程序。相比传统的SMP(对称多处理),AMP具有独特优势。
核心特性:
异构运算:不同核心运行最适合的操作系统,如Linux处理复杂应用,RT-Thread保障实时任务;
资源隔离:各核心拥有独立内存空间,避免资源冲突;
灵活通信:通过共享内存、RPMSG等方式实现高效核间通信;
商业价值:
成本优化:单芯片替代多芯片方案,减少PCB面积和元器件数量;
开发灵活:支持Linux、RT-Thread、裸机程序的自由组合;
系统可靠:故障隔离,关键任务永不掉线;
二、实战选型:MYD-LR3576的AMP硬件基础
米尔核心板 MYD-LR3576 基于 RK3576 处理器,集成三大核心集群:AP 端配备 4 颗 ARM Cortex-A72 与 4 颗 ARM Cortex-A53 核心,MCU 端搭载 1 颗 ARM Cortex-M0 核心,通过 AMP 架构实现多系统异构运行,在成本优化与开发灵活性上展现突出优势。

MYD-LR3576开发板
三大核心集群:

系统支持:

已验证AMP方案:
AP+AP架构:Linux + RT-Thread/Bare-metal
AP+MCU架构:Linux + MCU RT-Thread/Bare-metal
三、实战操作:AMP 系统串口资源配置
实战目标:基于MYD-LR3576开发板,详细讲解Linux与RT-Thread侧的串口资源配置全流程,实现从理论到实践的完整落地。
3.1 Linux 侧串口资源的剥离与分配
在 AMP 架构中,若需将 UART6 分配给 RT-Thread 从核使用,需先在 Linux 设备树中完成资源剥离,避免 Linux 内核对该外设的占用。
1.失能UART6: Linux 设备树通过节点状态配置控制外设的启用 / 禁用。对于 UART6,需在其节点中添加 “status = "disabled"” 属性,明确告知 Linux 内核:该串口不再由 Linux 管理。
&uart6 {status = "disabled"; // 剥离Linux对UART6的控制权};
2.分配UART6 资源
剥离后的 UART6 资源需通过 rockchip_amp 节点重新分配给从核,配置内容包括时钟资源、引脚功能与中断路由:
&rockchip_amp {clocks = <...>, <&cru SCLK_UART6>, <&cru PCLK_UART6>;pinctrl-0 = <&uart6m3_xfer>;amp-irqs = <GIC_AMP_IRQ_CFG_ROUTE(114, CPU_GET_AFFINITY(3, 0))>;};
3.分配从核内存
为避免 Linux 内核占用从核的运行内存,需在 reserved-memory 节点中划分专属内存区域。例如,为 RT-Thread 从核预留 8MB 内存:
amp_reserved: amp@41800000 {reg = <0x0 0x41800000 0x0 0x00800000>; // 起始地址0x41800000,大小8MBno-map; // 禁止Linux映射该区域,确保从核独占};
3.2 RT-Thread 侧 UART6 的初始化与启用
Linux 侧完成资源剥离后,需在 RT-Thread 中对 UART6 进行初始化,使其具备通信能力。RT-Thread 的配置流程主要包括引脚复用、中断路由与外设使能三步。
1.UART6 引脚复用配置
RK3576 的引脚支持多功能复用,UART6 的 TX/RX 引脚需配置为对应功能模式(如 Func13)。通过 RT-Thread 的硬件抽象层(HAL)接口,可直接完成引脚功能的配置:
#ifdef RT_USING_UART6uart6_m3_iomux_config();#endifvoid uart6_m3_iomux_config(void){HAL_PINCTRL_SetIOMUX(GPIO_BANK4, GPIO_PIN_C5, PIN_CONFIG_MUX_FUNC13);HAL_PINCTRL_SetIOMUX(GPIO_BANK4, GPIO_PIN_C4, PIN_CONFIG_MUX_FUNC13);}
2.UART6 中断路由配置
为确保 UART6 的中断能被 CPU3(从核)响应,需通过 GIC 中断控制器的路由配置,将 UART6 的中断号与 CPU3 绑定。RT-Thread 提供了简洁的条件编译选项:
#ifdef RT_USING_UART6GIC_AMP_IRQ_CFG_ROUTE(UART6_IRQn, 0xd0, CPU_GET_AFFINITY(3, 0));#endif
3.UART6 RTOS侧使能
通过在 RT-Thread 的配置文件中启用对应选项,使能 UART6条件编译:
CONFIG_RT_CONSOLE_DEVICE_NAME="uart6"CONFIG_RT_USING_UART6=y
四、编译部署:AMP系统镜像构建
4.1 编译镜像
完成配置后,返回 SDK 工程根目录,执行编译脚本:
cd MYD-LR3576./build.sh lunch1. rockchip_defconfig2. rockchip_rk3576_myd_lr3576_amp_defconfig3. rockchip_rk3576_myd_lr3576_defconfig4. rockchip_rk3576_myd_lr3576_mcu_defconfigWhich would you like? [1]: 2...../build.sh # 完整编译
编译成功后,生成的系统镜像文件路径为:
ls output/update/Image/update.imgupdate.img
4.2 烧录镜像至开发板
请使用瑞芯微官方烧录工具RKDevTool 将镜像写入开发板。
五、功能验证
5.1 验证环境搭建
连接开发板 Debug 口:串口参数设为 115200 波特率、8 数据位、1 停止位、无校验位;
连接开发板 UART6 串口(具体位置如下图):参数设为 1500000 波特率、8 数据位、1 停止位、无校验位。

5.2 主核验证(Linux终端)
打开主核debug终端,输入lscpu命令查看CPU信息,若Cortex-A53核心数量显示为3(原4颗,1颗分配给RT-Thread),说明主核配置生效:
lscpu# 输出结果中
Cortex-A53核心数为3

5.3 从核验证(RT-Thread终端)
打开UART6对应的串口终端(波特率默认1500000),若能看到RT-Thread的启动日志,说明从核系统已成功运行,UART6外设正常工作。

六、总结
本次串口资源配置实战,清晰地验证了外设从Linux侧剥离、再分配至RT-Thread侧的核心方法论。这仅是AMP灵活性的起点,基于相同的配置逻辑,开发者还可将GPIO、I2C、SPI等更多外设进行精细化分配。
这种灵活的异构计算模式,使其能够无缝适配多类对性能、实时性与功耗有综合要求的工业与嵌入式场景。其典型应用模式可归纳如下:
1.工业网关:Linux运行网络协议栈、数据库与Web服务,实现数据上云与远程管理;RT-Thread则实时采集PLC数据、精准控制执行器,保障工业现场毫秒级响应与确定性。
2.机器人控制器:Linux承载SLAM算法、视觉感知、路径规划与人机交互界面;RT-Thread专责多轴电机闭环控制、高频率传感器融合及硬实时安全连锁。
3.智能音视频设备:Linux处理高清音视频编解码、AI模型推理及云服务对接;独立Cortex-M0核心则实现低功耗待机、语音关键词唤醒与触控检测,显著优化系统功耗与响应速度。

AMP架构的价值,正是在于让开发者能够根据场景需求,在同一硬件平台上自由调配计算资源,实现性能、成本与功耗的最佳平衡。
2025-12-05
从两轮车仪表到工程机械环视,米尔用国产芯打造“越级”显控体验
在工业4.0 与智能化浪潮的推动下,传统工业设备正在经历一场“交互革命”。从电动两轮车的智能仪表,到工程机械的 360° 环视中控,用户对“更高清的显示、更流畅的触控、更丰富的互联”提出了严苛要求。然而,面对复杂的工业现场,开发者往往面临两难:低端市场(如仪表、充电桩):传统MCU 跑不动复杂界面,上 Linux/安卓方案成本又太高。中高端市场(如工程机械、医疗):多路视频输入(如360环视)需要
2025-12-05
【深度实战】米尔MYD-LR3576 AMP非对称多核开发指南:从配置到实战
一、什么是AMP?为什么重要?AMP(Asymmetric Multi-Processing)非对称多处理架构,允许单个芯片的不同核心运行不同的操作系统或裸机程序。相比传统的SMP(对称多处理),AMP具有独特优势。核心特性:异构运算:不同核心运行最适合的操作系统,如Linux处理复杂应用,RT-Thread保障实时任务;资源隔离:各核心拥有独立内存空间,避免资源冲突;灵活通信:通过共享内存、RP
2025-11-27
为机器人开发赋能,米尔RK3576环视方案解析
一、项目背景与测试平台本次360环视系统原型基于米尔电子MYD-LR3576开发板进行构建与评估。该开发板所搭载的瑞芯微RK3576芯片,集成了4核Cortex-A72、4核Cortex-A53、Mali-G52 GPU及高达6TOPS算力的NPU。本文旨在通过实际测试数据,从功能实现、实时性能与AI拓展潜力三大核心维度,为客户提供一份关于该平台在360环视应用中能力的真实参考。二、系统流程与功能
2025-11-13
助力V2G,SECC GreenPHY实战开发
随着电动汽车与电网双向交互(V2G)技术的快速发展,充电桩与车辆间的高效通信成为实现智能能源管理的关键。SECC作为充电桩的通信控制核心,其与电力线载波通信芯片的适配尤为重要。本文将分享基于米尔核心板,调试联芯通MSE102x GreenPHY芯片的实战经验,为V2G通信开发提供参考。MSE102x芯片介绍联芯通MSE102x系列芯片是一款专注于电动汽车充电通信和智能能源管理的GreenPHY电力
2025-11-13
定制未来,共建生态,米尔出席安路研讨会
在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年11月12日,米尔出席安路科技2025 AEC FPGA技术沙龙•北京专场,与技术专家及行业伙伴齐聚一堂,探讨前沿技术趋势,解锁场景化定制方案,共建开放共赢的FPGA新生态!米尔活动现场论坛上,米尔电子产品经理Jeson发表题为“基于DR1M90 FPSOC的工业应用方案”的演讲。演讲介绍了米尔作为嵌入式领域的领军企业,在
2025-11-11
RK3576开发板
RK3576开发板是米尔电子推出的开发板,于2024年10月上市。RK3576开发板是基于瑞芯微RK3576搭载了四核A72与四核A53处理器,主频2.2GHz。RK3576集成了6TOPS的NPU,支持多种深度学习框架,能够处理复杂的AI算法,提高监控效率,降低误报率。RK3576的主芯片采用了八核大小核架构,包括四核Cortex-A72和四核Cortex-A53,
2025-11-11
RK3576核心板
RK3576核心板是深圳米尔电子旗下产品,是基于瑞芯微RK3576搭载了四核A72与四核A53处理器,主频高达2.2GHz。RK3576集成了6TOPS的NPU,支持多种深度学习框架,能够处理复杂的AI算法,提高监控效率,降低误报率。RK3576的主芯片采用了八核大小核架构,包括四核Cortex-A72和四核Cortex-A53,主频分别高达2.2GHz和1.8GHz,CPU算力达58K DMIP
2025-11-06
米尔SECC方案助力国标充电桩出海
随着电动汽车与电网融合加速,国标(GB/T 27930)充电桩出海面临欧标(ISO 15118 / DIN 70121)兼容挑战。米尔电子的 SECC (供电设备通信控制器) 方案,实现协议转换、安全通信及参考开发平台,助力充电桩厂商快速进军海外市场。
2025-11-06
MYD-LD25X Cortex-M33实时核开发实战解析
在嵌入式系统设计中,如何平衡高性能计算与实时控制一直是工程师面临的挑战。STM32MP257的异构架构为这一难题提供了优雅的解决方案,而其中的Cortex-M33实时核更是实现硬实时性能的关键所在。一、异构架构:分工明确,效能卓越STM32MP257采用创新的双核子系统设计:Cortex-A35应用核(双核1.5GHz):运行Linux系统,负责复杂UI、网络通信、文件管理等非实时任务。Corte
2025-10-30
米尔RK3576边缘计算盒精准驱动菜品识别模型性能强悍
❝在人工智能与边缘计算深度融合的今天,将AI模型高效部署于终端设备已成为产业智能化的关键。本文将分享基于米尔MYD-LR3576边缘计算盒子部署菜品识别安卓Demo的实战经验。该设备凭借其内置的强劲瑞芯微RK3576芯片,为视觉识别模型提供了充沛的本地AI算力,成功将“智慧识菜”的能力浓缩于方寸之间,充分证明了其作为边缘AI应用坚实载体的卓越性能与可靠性。❝本文以米尔电子的MYD-LR3576边缘