G2D图像处理硬件调用和测试-基于米尔全志T113-i开发板

2024-04-09

1693

来源:米尔电子
本篇测评由电子工程世界的优秀测评者“jf_99374259”提供。
本文将介绍基于米尔电子MYD-YT113i开发板的G2D图像处理硬件调用和测试。
MYC-YT113i核心板及开发板
真正的国产核心板,100%国产物料认证
国产T113-i处理器配备2*Cortex-A7@1.2GHz ,RISC-V
外置DDR3接口、支持视频编解码器、HiFi4 DSP
接口丰富:视频采集接口、显示器接口、USB2.0 接口、CAN 接口、千兆以太网接口
工业级:-40℃~+85℃、尺寸37mm*39mm
邮票孔+LGA,140+50PIN
全志 T113-i 2D图形加速硬件支持情况
Supports layer size up to 2048 x 2048 pixels
Supports pre-multiply alpha image data
Supports color key
Supports two pipes Porter-Duff alpha blending
Supports multiple video formats 4:2:0, 4:2:2, 4:1:1 and multiple pixel formats (8/16/24/32 bits graphics
layer)Supports memory scan order option
Supports any format convert function
Supports 1/16× to 32× resize ratio
Supports 32-phase 8-tap horizontal anti-alias filter and 32-phase 4-tap vertical anti-alias filter
Supports window clip
Supports FillRectangle, BitBlit, StretchBlit and MaskBlit
Supports horizontal and vertical flip, clockwise 0/90/180/270 degree rotate for normal buffer
Supports horizontal flip, clockwise 0/90/270 degree rotate for LBC buffer
可以看到 g2d 硬件支持相当多的2D图像处理,包括颜色空间转换,分辨率缩放,图层叠加,旋转等
开发环境配置
基于C语言实现的YUV转RGB
这里复用之前T113-i JPG解码的函数
void yuv420sp2rgb(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb) { const unsigned char* yptr = yuv420sp; const unsigned char* vuptr = yuv420sp + w * h; for (int y = 0; y < h; y += 2) { const unsigned char* yptr0 = yptr; const unsigned char* yptr1 = yptr + w; unsigned char* rgb0 = rgb; unsigned char* rgb1 = rgb + w * 3; int remain = w; #define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255); for (; remain > 0; remain -= 2) { // R = 1.164 * yy + 1.596 * vv // G = 1.164 * yy - 0.813 * vv - 0.391 * uu // B = 1.164 * yy + 2.018 * uu // R = Y + (1.370705 * (V-128)) // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128)) // B = Y + (1.732446 * (U-128)) // R = ((Y << 6) + 87.72512 * (V-128)) >> 6 // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6 // B = ((Y << 6) + 110.876544 * (U-128)) >> 6 // R = ((Y << 6) + 90 * (V-128)) >> 6 // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6 // B = ((Y << 6) + 113 * (U-128)) >> 6 // R = (yy + 90 * vv) >> 6 // G = (yy - 46 * vv - 22 * uu) >> 6 // B = (yy + 113 * uu) >> 6 int v = vuptr[0] - 128; int u = vuptr[1] - 128; int ruv = 90 * v; int guv = -46 * v + -22 * u; int buv = 113 * u; int y00 = yptr0[0] << 6; rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6); rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6); rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6); int y01 = yptr0[1] << 6; rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6); rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6); rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6); int y10 = yptr1[0] << 6; rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6); rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6); rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6); int y11 = yptr1[1] << 6; rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6); rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6); rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6); yptr0 += 2; yptr1 += 2; vuptr += 2; rgb0 += 6; rgb1 += 6; } #undef SATURATE_CAST_UCHAR yptr += 2 * w; rgb += 2 * 3 * w; } }
基于ARM neon指令集优化的YUV转RGB
考虑到armv7编译器的自动neon优化能力较差,这里针对性的编写 arm neon inline assembly 实现YUV2RGB内核部分,达到最优化的性能,榨干cpu性能
void yuv420sp2rgb_neon(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb) { const unsigned char* yptr = yuv420sp; const unsigned char* vuptr = yuv420sp + w * h; #if __ARM_NEON uint8x8_t _v128 = vdup_n_u8(128); int8x8_t _v90 = vdup_n_s8(90); int8x8_t _v46 = vdup_n_s8(46); int8x8_t _v22 = vdup_n_s8(22); int8x8_t _v113 = vdup_n_s8(113); #endif // __ARM_NEON for (int y = 0; y < h; y += 2) { const unsigned char* yptr0 = yptr; const unsigned char* yptr1 = yptr + w; unsigned char* rgb0 = rgb; unsigned char* rgb1 = rgb + w * 3; #if __ARM_NEON int nn = w >> 3; int remain = w - (nn << 3); #else int remain = w; #endif // __ARM_NEON #if __ARM_NEON #if __aarch64__ for (; nn > 0; nn--) { int16x8_t _yy0 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr0), 6)); int16x8_t _yy1 = vreinterpretq_s16_u16(vshll_n_u8(vld1_u8(yptr1), 6)); int8x8_t _vvuu = vreinterpret_s8_u8(vsub_u8(vld1_u8(vuptr), _v128)); int8x8x2_t _vvvvuuuu = vtrn_s8(_vvuu, _vvuu); int8x8_t _vv = _vvvvuuuu.val[0]; int8x8_t _uu = _vvvvuuuu.val[1]; int16x8_t _r0 = vmlal_s8(_yy0, _vv, _v90); int16x8_t _g0 = vmlsl_s8(_yy0, _vv, _v46); _g0 = vmlsl_s8(_g0, _uu, _v22); int16x8_t _b0 = vmlal_s8(_yy0, _uu, _v113); int16x8_t _r1 = vmlal_s8(_yy1, _vv, _v90); int16x8_t _g1 = vmlsl_s8(_yy1, _vv, _v46); _g1 = vmlsl_s8(_g1, _uu, _v22); int16x8_t _b1 = vmlal_s8(_yy1, _uu, _v113); uint8x8x3_t _rgb0; _rgb0.val[0] = vqshrun_n_s16(_r0, 6); _rgb0.val[1] = vqshrun_n_s16(_g0, 6); _rgb0.val[2] = vqshrun_n_s16(_b0, 6); uint8x8x3_t _rgb1; _rgb1.val[0] = vqshrun_n_s16(_r1, 6); _rgb1.val[1] = vqshrun_n_s16(_g1, 6); _rgb1.val[2] = vqshrun_n_s16(_b1, 6); vst3_u8(rgb0, _rgb0); vst3_u8(rgb1, _rgb1); yptr0 += 8; yptr1 += 8; vuptr += 8; rgb0 += 24; rgb1 += 24; } #else if (nn > 0) { asm volatile( "0: n" "pld [%3, #128] n" "vld1.u8 {d2}, [%3]! n" "vsub.s8 d2, d2, %12 n" "pld [%1, #128] n" "vld1.u8 {d0}, [%1]! n" "pld [%2, #128] n" "vld1.u8 {d1}, [%2]! n" "vshll.u8 q2, d0, #6 n" "vorr d3, d2, d2 n" "vshll.u8 q3, d1, #6 n" "vorr q9, q2, q2 n" "vtrn.s8 d2, d3 n" "vorr q11, q3, q3 n" "vmlsl.s8 q9, d2, %14 n" "vorr q8, q2, q2 n" "vmlsl.s8 q11, d2, %14 n" "vorr q10, q3, q3 n" "vmlal.s8 q8, d2, %13 n" "vmlal.s8 q2, d3, %16 n" "vmlal.s8 q10, d2, %13 n" "vmlsl.s8 q9, d3, %15 n" "vmlal.s8 q3, d3, %16 n" "vmlsl.s8 q11, d3, %15 n" "vqshrun.s16 d24, q8, #6 n" "vqshrun.s16 d26, q2, #6 n" "vqshrun.s16 d4, q10, #6 n" "vqshrun.s16 d25, q9, #6 n" "vqshrun.s16 d6, q3, #6 n" "vqshrun.s16 d5, q11, #6 n" "subs %0, #1 n" "vst3.u8 {d24-d26}, [%4]! n" "vst3.u8 {d4-d6}, [%5]! n" "bne 0b n" : "=r"(nn), // %0 "=r"(yptr0), // %1 "=r"(yptr1), // %2 "=r"(vuptr), // %3 "=r"(rgb0), // %4 "=r"(rgb1) // %5 : "0"(nn), "1"(yptr0), "2"(yptr1), "3"(vuptr), "4"(rgb0), "5"(rgb1), "w"(_v128), // %12 "w"(_v90), // %13 "w"(_v46), // %14 "w"(_v22), // %15 "w"(_v113) // %16 : "cc", "memory", "q0", "q1", "q2", "q3", "q8", "q9", "q10", "q11", "q12", "d26"); } #endif // __aarch64__ #endif // __ARM_NEON #define SATURATE_CAST_UCHAR(X) (unsigned char)::std::min(::std::max((int)(X), 0), 255); for (; remain > 0; remain -= 2) { // R = 1.164 * yy + 1.596 * vv // G = 1.164 * yy - 0.813 * vv - 0.391 * uu // B = 1.164 * yy + 2.018 * uu // R = Y + (1.370705 * (V-128)) // G = Y - (0.698001 * (V-128)) - (0.337633 * (U-128)) // B = Y + (1.732446 * (U-128)) // R = ((Y << 6) + 87.72512 * (V-128)) >> 6 // G = ((Y << 6) - 44.672064 * (V-128) - 21.608512 * (U-128)) >> 6 // B = ((Y << 6) + 110.876544 * (U-128)) >> 6 // R = ((Y << 6) + 90 * (V-128)) >> 6 // G = ((Y << 6) - 46 * (V-128) - 22 * (U-128)) >> 6 // B = ((Y << 6) + 113 * (U-128)) >> 6 // R = (yy + 90 * vv) >> 6 // G = (yy - 46 * vv - 22 * uu) >> 6 // B = (yy + 113 * uu) >> 6 int v = vuptr[0] - 128; int u = vuptr[1] - 128; int ruv = 90 * v; int guv = -46 * v + -22 * u; int buv = 113 * u; int y00 = yptr0[0] << 6; rgb0[0] = SATURATE_CAST_UCHAR((y00 + ruv) >> 6); rgb0[1] = SATURATE_CAST_UCHAR((y00 + guv) >> 6); rgb0[2] = SATURATE_CAST_UCHAR((y00 + buv) >> 6); int y01 = yptr0[1] << 6; rgb0[3] = SATURATE_CAST_UCHAR((y01 + ruv) >> 6); rgb0[4] = SATURATE_CAST_UCHAR((y01 + guv) >> 6); rgb0[5] = SATURATE_CAST_UCHAR((y01 + buv) >> 6); int y10 = yptr1[0] << 6; rgb1[0] = SATURATE_CAST_UCHAR((y10 + ruv) >> 6); rgb1[1] = SATURATE_CAST_UCHAR((y10 + guv) >> 6); rgb1[2] = SATURATE_CAST_UCHAR((y10 + buv) >> 6); int y11 = yptr1[1] << 6; rgb1[3] = SATURATE_CAST_UCHAR((y11 + ruv) >> 6); rgb1[4] = SATURATE_CAST_UCHAR((y11 + guv) >> 6); rgb1[5] = SATURATE_CAST_UCHAR((y11 + buv) >> 6); yptr0 += 2; yptr1 += 2; vuptr += 2; rgb0 += 6; rgb1 += 6; } #undef SATURATE_CAST_UCHAR yptr += 2 * w; rgb += 2 * 3 * w; } }
基于G2D图形硬件的YUV转RGB
我们先实现 dmaion buffer 管理器,参考
这里贴的代码省略了异常错误处理的逻辑,有个坑是 linux-4.9 和 linux-5.4 用法不一样,米尔电子的这个T113-i系统是linux-5.4,所以不兼容4.9内核的ioctl用法习惯
struct ion_memory { size_t size; int fd; void* virt_addr; unsigned int phy_addr; }; class ion_allocator { public: ion_allocator(); ~ion_allocator(); int open(); void close(); int alloc(size_t size, struct ion_memory* mem); int free(struct ion_memory* mem); int flush(struct ion_memory* mem); public: int ion_fd; int cedar_fd; }; ion_allocator::ion_allocator() { ion_fd = -1; cedar_fd = -1; } ion_allocator::~ion_allocator() { close(); } int ion_allocator::open() { close(); ion_fd = ::open("/dev/ion", O_RDWR); cedar_fd = ::open("/dev/cedar_dev", O_RDONLY); ioctl(cedar_fd, IOCTL_ENGINE_REQ, 0); return 0; } void ion_allocator::close() { if (cedar_fd != -1) { ioctl(cedar_fd, IOCTL_ENGINE_REL, 0); ::close(cedar_fd); cedar_fd = -1; } if (ion_fd != -1) { ::close(ion_fd); ion_fd = -1; } } int ion_allocator::alloc(size_t size, struct ion_memory* mem) { struct aw_ion_new_alloc_data alloc_data; alloc_data.len = size; alloc_data.heap_id_mask = AW_ION_SYSTEM_HEAP_MASK; alloc_data.flags = AW_ION_CACHED_FLAG | AW_ION_CACHED_NEEDS_SYNC_FLAG; alloc_data.fd = 0; alloc_data.unused = 0; ioctl(ion_fd, AW_ION_IOC_NEW_ALLOC, &alloc_data); void* virt_addr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, alloc_data.fd, 0); struct aw_user_iommu_param iommu_param; iommu_param.fd = alloc_data.fd; iommu_param.iommu_addr = 0; ioctl(cedar_fd, IOCTL_GET_IOMMU_ADDR, &iommu_param); mem->size = size; mem->fd = alloc_data.fd; mem->virt_addr = virt_addr; mem->phy_addr = iommu_param.iommu_addr; return 0; } int ion_allocator::free(struct ion_memory* mem) { if (mem->fd == -1) return 0; struct aw_user_iommu_param iommu_param; iommu_param.fd = mem->fd; ioctl(cedar_fd, IOCTL_FREE_IOMMU_ADDR, &iommu_param); munmap(mem->virt_addr, mem->size); ::close(mem->fd); mem->size = 0; mem->fd = -1; mem->virt_addr = 0; mem->phy_addr = 0; return 0; } int ion_allocator::flush(struct ion_memory* mem) { struct dma_buf_sync sync; sync.flags = DMA_BUF_SYNC_END | DMA_BUF_SYNC_RW; ioctl(mem->fd, DMA_BUF_IOCTL_SYNC, &sync); return 0; }
然后再实现 G2D图形硬件 YUV转RGB 的转换器
提前分配好YUV和RGB的dmaion buffer
将YUV数据拷贝到dmaion buffer,flush cache完成同步
配置转换参数,ioctl调用G2D_CMD_BITBLT_H完成转换
flush cache完成同步,从dmaion buffer拷贝出RGB数据
释放dmaion buffer
// 步骤1 ion_allocator ion; ion.open(); struct ion_memory yuv_ion; ion.alloc(rgb_size, &rgb_ion); struct ion_memory rgb_ion; ion.alloc(yuv_size, &yuv_ion); int g2d_fd = ::open("/dev/g2d", O_RDWR); // 步骤2 memcpy((unsigned char*)yuv_ion.virt_addr, yuv420sp, yuv_size); ion.flush(&yuv_ion); // 步骤3 g2d_blt_h blit; memset(&blit, 0, sizeof(blit)); blit.flag_h = G2D_BLT_NONE_H; blit.src_image_h.format = G2D_FORMAT_YUV420UVC_V1U1V0U0; blit.src_image_h.width = width; blit.src_image_h.height = height; blit.src_image_h.align[0] = 0; blit.src_image_h.align[1] = 0; blit.src_image_h.clip_rect.x = 0; blit.src_image_h.clip_rect.y = 0; blit.src_image_h.clip_rect.w = width; blit.src_image_h.clip_rect.h = height; blit.src_image_h.gamut = G2D_BT601; blit.src_image_h.bpremul = 0; blit.src_image_h.mode = G2D_PIXEL_ALPHA; blit.src_image_h.use_phy_addr = 0; blit.src_image_h.fd = yuv_ion.fd; blit.dst_image_h.format = G2D_FORMAT_RGB888; blit.dst_image_h.width = width; blit.dst_image_h.height = height; blit.dst_image_h.align[0] = 0; blit.dst_image_h.clip_rect.x = 0; blit.dst_image_h.clip_rect.y = 0; blit.dst_image_h.clip_rect.w = width; blit.dst_image_h.clip_rect.h = height; blit.dst_image_h.gamut = G2D_BT601; blit.dst_image_h.bpremul = 0; blit.dst_image_h.mode = G2D_PIXEL_ALPHA; blit.dst_image_h.use_phy_addr = 0; blit.dst_image_h.fd = rgb_ion.fd; ioctl(g2d_fd, G2D_CMD_BITBLT_H, &blit); // 步骤4 ion.flush(&rgb_ion); memcpy(rgb, (const unsigned char*)rgb_ion.virt_addr, rgb_size); // 步骤5 ion.free(&rgb_ion); ion.free(&yuv_ion); ion.close(); ::close(g2d_fd);
G2D图像硬件YUV转RGB测试
考虑到dmaion buffer分配和释放都比较耗时,我们提前做好,循环调用步骤3的G2D转换,统计耗时,并在top工具中查看CPU占用率
sh-4.4# LD_LIBRARY_PATH=. ./g2dtest INFO : cedarc <CedarPluginVDInit:84>: register mjpeg decoder success! this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg decoder cvi this device is not whitelisted for jpeg encoder rkmpp INFO : cedarc <log_set_level:43>: Set log level to 5 from /vendor/etc/cedarc.conf ERROR : cedarc <DebugCheckConfig:316>: now cedarc log level:5 ERROR : cedarc <VideoEncCreate:241>: now cedarc log level:5 yuv420sp2rgb 46.61 yuv420sp2rgb 42.04 yuv420sp2rgb 41.32 yuv420sp2rgb 42.06 yuv420sp2rgb 41.69 yuv420sp2rgb 42.05 yuv420sp2rgb 41.29 yuv420sp2rgb 41.30 yuv420sp2rgb 42.14 yuv420sp2rgb 41.33 yuv420sp2rgb_neon 10.57 yuv420sp2rgb_neon 7.21 yuv420sp2rgb_neon 6.77 yuv420sp2rgb_neon 8.31 yuv420sp2rgb_neon 7.60 yuv420sp2rgb_neon 6.80 yuv420sp2rgb_neon 6.77 yuv420sp2rgb_neon 7.01 yuv420sp2rgb_neon 7.11 yuv420sp2rgb_neon 7.06 yuv420sp2rgb_g2d 4.32 yuv420sp2rgb_g2d 4.69 yuv420sp2rgb_g2d 4.56 yuv420sp2rgb_g2d 4.57 yuv420sp2rgb_g2d 4.52 yuv420sp2rgb_g2d 4.54 yuv420sp2rgb_g2d 4.52 yuv420sp2rgb_g2d 4.58 yuv420sp2rgb_g2d 4.60 yuv420sp2rgb_g2d 4.67
可以看到 ARM neon 的优化效果非常明显,而使用G2D图形硬件能获得进一步加速,并且能显著降低CPU占用率!
耗时(ms) | CPU占用率(%) | |
---|---|---|
C | 41.30 | 50 |
neon | 6.77 | 50 |
g2d | 4.32 | 12 |
转换结果对比和分析
C和neon的转换结果完全一致,但是g2d转换后的图片有明显的色差
G2D图形硬件只支持 G2D_BT601,G2D_BT709,G2D_BT2020 3种YUV系数,而JPG所使用的YUV系数是改版BT601,因此产生了色差
从g2d内核驱动中也可以得知,暂时没有方法为g2d设置自定义的YUV系数,g2d不适合用于JPG的编解码,但依然适合摄像头和视频编解码的颜色空间转换
2025-08-14
12路1080P高清视频流,米尔RK3576开发板重塑视频处理极限
在智能视觉技术不断发展的今天,多路摄像数据的处理与传输已成为众多应用场景的核心需求。从智能安防监控领域的全面覆盖,到工业视觉处理网关的精准检测,再到车载环视融合平台的实时驾驶辅助以及智慧社区AI防控的快速响应,多路摄像数据的处理与传输已成为关键需求,而高效且低延时的解决方案则是实现这些应用的核心。目前多路摄像传输方案往往存在一定局限,接入路数有限,难以满足大规模监控场景的需求,且延迟较高,影响实时
2025-08-14
共建生态,米尔将出席2025安路科技FPGA技术沙龙
在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业专家、企业代表及技术开发者,探讨前沿技术趋势,解锁定制化解决方案,共建开放共赢的FPGA生态圈!米尔作为领先的嵌入式处理器模组厂商,将携安路FPGA核心板和开发板亮相,并发表主题演
2025-08-08
如何在RK3576开发板上板端编译OpenCV并搭建应用
本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微 RK3576开发板)的板端编译OpenCV及环境搭建方案的开发测试。摘自优秀创作者-短笛君RK3576具有如下配置:4× Cortex-A72(大核,主频最高 2.2GHz)4× Cortex-A53(小核,主频最高 1.8GHz)NPU(AI加速单元):独立 NPU,算力典型值6 TOPS(INT8)支持 TensorFlow L
2025-08-08
倒计时!米尔-安路飞龙派创意秀奖品等您领~~
创意秀活动进入倒计时阶段2025年米尔-安路飞龙派FPGA FPSoC创意开发大赛即将于8月15日正式收官(原定于6月15日,已延期到8月15日)。作为国产工业级FPGA领域的赛事,本次活动已吸引多支开发团队参与,基于MYD-YM90X开发板产出了众多创新解决方案。现距截稿仅剩7天,米尔特别提醒尚未提交作品的开发者把握最后几天,分享您的技术创作,申领米尔电子的奖品。活动链接:https://mp
2025-07-25
如何在RK3576开发板上运行TinyMaix :超轻量级推理框架--基于米尔MYD-LR3576开发板
本文将介绍基于米尔电子MYD-LR3576开发平台部署超轻量级推理框架方案:TinyMaix摘自优秀创作者-短笛君TinyMaix 是面向单片机的超轻量级的神经网络推理库,即 TinyML 推理库,可以让你在任意低资源MCU上运行轻量级深度学习模型。关键特性核心代码少于 400行(tm_layers.c+tm_model.c+arch_cpu.h),代码段(.text)少于3KB低内存消耗支持 I
2025-07-21
RKDC2025 丨米尔亮相第九届瑞芯微开发者大会,共绘工业数智新图景
2025年7月17日,第九届瑞芯微开发者大会(RKDC!2025)在福州海峡国际会展中心开幕。米尔电子作为瑞芯微IDH生态合作伙伴受邀出席此次盛会。米尔不仅为广大用户带来米尔基于RK35系列处理器的核心板和开发板/工控机,更展示了多款针对不同行业的解决方案,吸引了广大参观者前来参观了解。展台现场此次米尔电子重点展出了基于瑞芯微RK3576、RK3568、RK3562、RK3506处理器的核心板,搭
2025-07-10
米尔将出席瑞芯微第九届开发者大会
2025年7月17日~18日,第九届瑞芯微开发者大会(RKDC!2025)将在福州海峡国际会展中心盛大启幕。米尔电子作为瑞芯微IDH生态合作伙伴,将携RK系列核心板、开发板、解决方案等产品出席此次盛会。届时,诚邀您莅临现场参观指导(展位号:F11),共话AI新技术的浪潮,推动电子产品从“IoT功能设备”向“场景化智能终端的演进,见证技术突破与生态协同!
2025-07-10
两款SoC方案评测:国产芯遍地开花
在工业自动化、电力智能设备等领域,传统欧美芯片长期占据主导地位。瑞芯微推出的RK3506J以及RK3562J工业级处理器,以“性价比+多核异构+工业级设计”为核心竞争力,直面工业场景对实时性、可靠性的严苛需求。米尔电子基于该系列芯片打造的开发板(MYD-YR3506J & MYD-YR3562J)凭借工业级的宽温运行、丰富的高速接口、多种外设资源,成为国产工业芯片落地的重要载体。本期视频与
2025-07-03
如何部署流媒体服务实现监控功能--基于米尔TI AM62x开发板
本文将介绍基于米尔电子MYD-YM62X开发板(米尔基于TI AM62开发板)的部署流媒体服务实现监控功能方案的开发测试。摘自优秀创作者-HonestQiao米尔-TI AM62x开发板除了可以用官方的CSI摄像头,还可以直接使用第三方的USB摄像头,我手头正好有几个个USB摄像头:经过实测,可以很好的在米尔-TI AM62x开发板上使用。这篇分享,就是在这块开发板上部署流媒体服务,通过USB摄像
2025-06-26
米尔STM32MP25系列产品荣获“2024‘物联之星’创新产品奖”
在“2024‘物联之星’中国物联网行业年度评选”中,米尔电子的MYC-LD25X核心板及开发板凭借其高性能、多接口、边缘算力等优势,荣获2024“物联之星”创新产品奖。米尔MYC-LD25X核心板及开发板获奖图获奖产品介绍MYC-LD25X核心板及开发板:米尔基于STM32MP257设计的嵌入式处理器模块MYC-LD25X核心板及开发板。核心板基于STM32MP2系列是意法半导体推出最新一代工